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Abstract: The main purpose of the present article is to propose a new estimator for the exponential mean 

whose bias and mean square error are both less than that of the MLE under type I censored sampling. Some 

other porperties of the proposed estimators are also studied. Comparisons of the proposed and the known 

estimators are also made for small sample size. 
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1. Introduction 

The exponential distribution has been widely used as a model in areas ranging 

from studies on industrial life testing to studies involving survival times in clinical 

trials. Extensive bibliography can be found in Johnson and Kotz (1970, Chapter 18), 

Mann et al. (1974), Lawless (1982), among others. For Bayes formulation, readers 

are referred to Martz and Waller (1982). 

In many situations, the experiment is conducted over a fixed period of time, and 

hence the observed failure times may be truncated by the time limit of the ex- 

periment. Such data are said to be type I censored. 

In this paper we consider the estimation of the exponential mean based on type 

1 censored data. We propose an estimator of the mean which has less bias and mean 

square error (MSE) than that of the MLE which was studied by Bartholomew 

(1957), Epstein and Sobel (1954) and others. 
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Let n denote the number of items being put on test at time zero. It is assumed 

that life length of each item on test has an exponential distribution with density 

f(x) = (I/S) exp(-x/0) for O<x<m, B>O. (I-1) 

For a fixed positive constant T, let [0, T] denote the time interval of the experiment 

and N the number of failures observed in [0, T]. Let Xrll <XtZ, 5 ... sXtNl denote 

the ordered observed failure times. The likelihood for 8 under type I censoring is 

L(B) = (1/8)Nexp $ X. +(n-N)T 
j=, ‘J1 

, NrO. 

The MLE for 0 is given by 

i X,;,+(n-N)T /N, 1 for N>O. 
i=l 

(1.2) 

Bartholomew (1957, 1963) has studied I!? and derived its sampling distribution. 

Later, Yang and Sirvanci (1977) conducted an important study on the behaviors of 

N, &and related quantities. Some large sample properties of these statistics were also 

studied. Sirvanci and Levent (1982) studied its numerical results. 

We propose a new estimator fi(defined in Section 2). If not all items are censored, 

it has been shown that the bias of e is of order 0( 1 /n4) which is less than that of 

6, the MLE, whose bias is of order 0(1/n). Hence, bias is computed under the con- 

dition N>O. Furthermore, we have shown that under condition NZ 1, n2(MSE(8) - 

MSE(g)) = aT2 + 0( l/n3) for some a> 0. Properties of consistency, asymptotic un- 

biasedness and normality of 6 are proven in Section 3. Comparisons of f? with @ and 

another estimator 8’ (defined by (2.8)) in terms of bias and mean square error for 

respective sample sizes n = 10 and n = 30 are plotted in Figures 1 and 2. Some of 

these values are also tabulated in Tables 1 and 2. 

2. A new alternative estimator 

2. I. Bias and mean square error 

Let EC and PC denote the conditional expectation and the probability calculated 

under the condition NZ 1. For convenience, set p = 1 - q = 1 - exp(- T/B). The bias 

of t? has been computed by Yang and Sirvanci (1977) 

Bias(o) =&(8)--B= -T/p+nTE,(l/N). (2.1) 

From Lemma 1 below we have 

E&/N) = (l/np)+(q/n2p2)+O(l/n3). 

Hence, 

Bias(d) = Tq/np2+O(l/n2). 

(2.2) 

(2.3) 
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Note that 
N 

This suggests using 

; X,,,/N+ S(T, N) 
i=l 

(2.4) 

(2.5) 

to estimate 8, where S(T, N) is an estimator for (p-l - 1). The MLE gin (1.2) is to let 

S(T, N) = T(nNP’ - l), (2.6) 

where N/n is the MLE of p. Alternatively, Huang and Wang (1989) considered 

S(T,N)= -T+(n+l)T/N-nT/N2 (2.7) 

for the estimation of l/p against that of n/N. For this case, they obtained an alter- 

native estimator for 8 defined by 

0*= f X,.1/N +(I-l/N)@-N)T/N. 
(i=* ’ > 

(2.8) 

It has been shown that 8* has less bias and MSE than that of 6? when n is large. 

Even when II is 10, its absolute bias and MSE of B* are still smaller when T is away 

from 0.5 (see Tables 1 and 2). In order to further reduce its bias, we replace the fac- 

tor 1 - l/N by 1 +a/N+p/N2+ y/N3 in (2.8) and consider the following class of 

estimators which include both 8* and 0 

O(a,fl,y)= f X./N +[(n-N)T/N](1+a/N+P/N2+y/N3). (2.9) 
(;_, [‘I > 

It is then noted that B(0, 0,O) = Band 0(- l,O,O)= 8* which are defined, respectively, 

by (1.2) and (2.8). Since the MSE of @ includes the only term of B2/np of the 

smallest order of n, we cannot reduce the order of MSE of B(cr,jI, y) by varying 

values of cr,p and y. Hence, we focus on the reduction of its bias. Through com- 

putation, it is found that the bias of @a, p, y) attains its minimum order of n when 

(Y = y = - 1 and p = 1. Accordingly, we propose the following estimator 

+[(n-N)T/N](l-l/N+1/N2-l/N3). (2.10) 

Before we compute its bias and MSE of 6, we need the following lemma. Because 

of its own usefulness, we expand each term E(1 /N’) up to O(l/n7) which is more 

than we need. 
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Lemma 1. 
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E,(l/N) = 1/np+q/n2p2+(q+q2)/n3p3 

+ (q + 4q* + q3)/dp4 + (q + 1 lq2 + 1 lq3 + q4)/nSp5 

+ (q + 26q* + 66q3 + 26q4 + q5)/n6p6 + 0(l/n7), 

E,(l/N*) = l/n2p2+3q/n3p3+(4q+7q2)/n4p4+(5q+30q2+ 15q3)/n5p5 

+(6q+91q2+146q3+31q4)/n6p6+0(1/n7), 

EC(1/N3) = l/n3p3+6q/n4p4+(10q+25q2)/n5p5 

+(15q+ 120q2+90q3)/n6p6+O(l/n7), 

EC(1/N4) = l/n4p4+ 10q/n5p5+(20q+65q2)/n6p6+O(1/n7), 

EC(1/N5) = l/n5p5 + 15q/n6p6+ 0(1/n’), 

EC(l/N6) = l/n6p6+O(l/n7), 

E,(l/N’) = 0(1/n’), i = 7,8. 

Proof. A continuous analogue of l/Nis the functionf(x) = l/x, for x> 0. We apply 

Taylor’s expansion tof(x) about x = np. We then compute the conditional expection 

EC of the Taylor expansion with x replaced by N. In the computation, we use the 

fact that if Y has a binomial distribution B(n,p), the moments of N and Y are 

related by 

E,(N- np)’ = 
1 

( > 
__ [E(Y-np)‘-(-l)‘(np)‘q”], for r= 1,2,... . 
l-q” 

The lemma then follows from straight forward calculation. 

Theorem 1. 

(i) Bias(e) + (np)3Bias(&r) = 0(l/n2), 

(ii) n2(MSE(8)-MSE(&)=aT2+0(1/n3), 

where 
a = (2q + 3q2)/p4 + (3q + 2Oq* + 9q3)/np5 

+(4q+69q2+ 110q3+21q4)/n2p6>0. 

Proof. Applying Lemma 1, we have 

E,(e) = B- Tq/n4p5 + TO(l/n’). 
Since 

Bias(g) = Tq/np’+ Tq(1 + q)/n2p3 + 0(l/n4), 

this proves (i). (ii) can be proven easily using Lemma 1. 
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2.2. Comparisons of 8, if?* and l? 

Let 6 denote either one of the estimators, 6 f3*, g. We denote the bias and MSE 

of the estimator 6 for given values of 6’ and T by B(6;0, T) and MSE(6;8, T) respec- 

tively. Then, for any c>O, we have 

B(cs;c~,,c~,) = cB(6;eo,t,), (2.11) 

MSE(c8;&,, ct,) = c2MSE(6;&, to). (2.12) 

For numerical computation, it is necessary to specify values for n, T, and 8. In view 

of (2.1 l), 

B(6;8, T) = @(S;l, T/O). (2.13) 

Thus we only have to compute B(6;l ,a), for 8= 1 and T=a. Bias for other values 

of 19 and T can be easily obtained from (2.13). Similar relation holds for MSE. 

Hence, comparing $, 8” and i? in terms of exact bias and MSE are possible for 

various T with fixed 8= 1. We plot these quantities for small sample sizes of n = 10 

and n = 30 in Figures 1 and 2. Biases and MSE of &, By and e for some values of 

T for n = 10, and 30 are tabulated respectively in Tables 1 and 2. 

3. Sample distribution and asymptotic properties of 6 

We note that, by (2.10), 

e= 6+/l(N) 

where 
(3.1) 

A(N)=T{l/N-(n+1)/N2+(,+1)/N3-n/N4}. (3.2) 

Let g(x) be the density of 6 and fC(8,) the conditional density of @under condition 

N2 1. Then, 

(k/e)kexp(-k(eo-A(m))/e)/T(k) I 
Xi;0 

k 

I( ) 
i (-l)i~k-l(~lk,i)l(~(m,k,i),~) 11 

X P”q”-m /( 1 - q”)2 (3.3) 

where 

D(m, k, i) = OO -A(m) - T(n - k + i)/k, (3.4) 
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Fig. 1. Plot of biases with respect to T. 
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Fig. 2. Plot of MSE with respect to T. 
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ls denotes the indicator function of set S and 

1 
with S(k, i) = X- T(n - k + i)/k (see Bartholomew (1963)). 

Theorem 2. 

(0 c? is strongly consistent and asymptotically unbiased, 

(iia) fi(8- 8) -% N(0, a2(0)), 

(iib) fi6’(6)(@- 0) 5 N(0, I), 

(iiia) n-“2N(f?-EC(6)) -% N(0, 02(0)), 

(iiib) n?2&(8)N(6-EC(6)) 2 N(0, l), 

Table 1 
Biases of @*, 6 and /?for some values of T 

T 0* s 6(x lomq 

n=lO 0.2 -2.69033 3.24833 -8.36663 

0.4 -0.28201 0.55918 -0.68846 

0.6 -0.08928 0.26358 -0.17611 

0.8 PO.04285 0.17324 -0.07099 

1.0 -0.02530 0.12039 -0.03645 

1.5 -0.01041 0.06645 -0.01183 

2.0 -0.00564 0.04186 -0.00560 

2.5 -0.00343 0.02767 -0.00315 

3.0 -0.00220 0.01862 -0.00193 

3.5 -0.00145 0.01258 -0.00123 

4.0 -0.00096 0.00848 -0.00080 

4.5 -0.00064 0.00569 -0.00053 

5.0 -0.00042 0.00380 -0.00035 

n=30 0.2 -0.07705 0.26796 -0.10329 

0.4 -0.01312 0.10075 -0.00850 

0.6 -0.00536 0.06135 -0.00217 

0.8 -0.00298 0.04349 -0.00088 

1 .o -0.00193 0.03315 0.00045 

1.5 -0.00089 0.01953 0.00015 

2.0 -0.00051 0.01263 0.00007 

2.5 -0.00032 0.00845 0.00004 

3.0 -0.00021 0.00573 0.00002 

3.5 -0.00014 0.00388 0.00002 

4.0 -0.00009 0.00262 0.00001 

4.5 -0.00006 0.00176 0.00001 

5.0 -0.00004 0.00118 0.00000 
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Table 2 

MSE of B*, t? and e for some values of T 

T e* e tJ( x 10-q 

n=lO 0.2 2.03441 22.25450 3.19667 

0.4 0.15968 2.40964 0.59686 

0.6 0.20200 0.84899 0.31504 

0.8 0.17904 0.46909 0.22502 

1.0 0.15865 0.32232 0.18249 

1.5 0.12904 0.19360 0.13704 

2.0 0.11530 0.15118 0.11930 

2.5 0.10831 0.13156 0.11073 

3.0 0.10455 0.12078 0.10617 

3.5 0.10248 0.11419 0.10362 

4.0 0.10132 0.10988 0.10214 

4.5 0.10069 0.10694 0.10128 

5.0 0.10034 0.10489 0.10077 

n=30 0.2 0.19717 0.75730 0.28354 

0.4 0.11040 0.19123 0.11898 

0.6 0.07840 0.10900 0.08089 

0.8 0.06306 0.07945 0.06416 

1.0 0.05429 0.06473 0.05490 

1.5 0.04348 0.04839 0.04371 

2.0 0.03880 0.04177 0.03892 

2.5 0.03642 0.03845 0.03650 

3.0 0.03512 0.03658 0.03518 

3.5 0.03439 0.03546 0.03442 

4.0 0.03396 0.03475 0.03398 

4.5 0.03370 0.03429 0.03372 

5.0 0.03355 0.03398 0.03357 

where 

o*(S) = 8*/(1 -exp(-T/B)). 

Proof. Note that n/N+ l/p a.s. under the conditional probability (PC). Hence, 

finA(N)=o(l) a.s. under PC. By Yang and Sirvanci (1977) we have that 

E,(n/N) -+ l/p and EC(n/N)2 + (l/~)~. Hence, _&A(N) = o( 1). Since 8 is consistent 

and asymptotically unbiased, so is e. Hence (i) holds. 

To show (iia), note that fi(& 0) = fi(g- 19) + fiA(N). Again, by Yang and Sir- 

vanci (1977), (iia) holds for &and finA (IV) = o( 1) under PC. By the Slutsky theorem, 

(iia) holds. Here o*(0) has been corrected in Yang and Sirvanci (1979). 

To show (iib), note that a2(r3) is continuous in 8>0. Hence, ~*(@/a~(@ + 1 

under PC (noting that e= @+0(1/f) n under P,.). Again, by Yang and Sirvanci 

(1977) (iib) holds for 8 and we may conclude (iib) by noting that fia-‘(@(g- 0)== 

(~-‘(e)/o-‘(8))~o-‘(8)(8-8+0(1/~)), where o(e)/o(&)+ 1 under PC. 

To show (iiia), note that it holds for 6. On the other hand, we can show that 

(N/n) fi(A (IV) - E,(A(N))) = o(1) under PC. Again, by the Slutsky theorem, we can 



196 W. T. Huang, H.S. Chen / Estimation of exponential mean 

conclude (iiia). For (iiib), follow analogous arguments for (iib). The proof is thus 

complete. 
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